Every sum system is divisible

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Every Sum System Is Divisible

We show that every sum system is divisible. Combined with B. V. R. Bhat and R. Srinivasan’s result, this shows that every product system arising from a sum system (and every generalized CCR flow) is either of type I or type III. A necessarily and sufficient condition for such a product system to be of type I is obtained.

متن کامل

Is every radiant function the sum of quasiconvex functions?

An open question in the study of quasiconvex function is the characterization of the class of functions which are sum of quasiconvex functions. In this paper we restrict attention to quasiconvex radiant functions, i.e. those whose level sets are radiant as well as convex and deal with the claim that a function can be expressed as the sum of quasiconvex radiant functions if and only if it is rad...

متن کامل

Every Natural Number Is the Sum of Forty-nine Palindromes

It is shown that the set of decimal palindromes is an additive basis for the natural numbers. Specifically, we prove that every natural number can be expressed as the sum of forty-nine (possibly zero) decimal palindromes. 1. Statement of Result Let N ..= {0, 1, 2, . . .} denote the set of natural numbers (including zero). Every number n 2 N has a unique decimal representation of the form

متن کامل

When every $P$-flat ideal is flat

In this paper‎, ‎we study the class of rings in which every $P$-flat‎ ‎ideal is flat and which will be called $PFF$-rings‎. ‎In particular‎, ‎Von Neumann regular rings‎, ‎hereditary rings‎, ‎semi-hereditary ring‎, ‎PID and arithmetical rings are examples of $PFF$-rings‎. ‎In the context domain‎, ‎this notion coincide with‎ ‎Pr"{u}fer domain‎. ‎We provide necessary and sufficient conditions for‎...

متن کامل

Modules for which every non-cosingular submodule is a summand

‎A module $M$ is lifting if and only if $M$ is amply supplemented and‎ ‎every coclosed submodule of $M$ is a direct summand‎. ‎In this paper‎, ‎we are‎ ‎interested in a generalization of lifting modules by removing the condition‎"‎amply supplemented‎" ‎and just focus on modules such that every non-cosingular‎ ‎submodule of them is a summand‎. ‎We call these modules NS‎. ‎We investigate some gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2009

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-09-04697-2